Listen to this page using ReadSpeaker

Building a Wiring Diagram for the Retina to Help Researchers Save and Restore Vision

Connectome image

An image of an electrically connected patch of one single class of retinal neurons that signal brightness for the visual system. Each single cell is shaped like a spider or octopus and connected to its neighbors. This is the first visualization of such a population of cells that has been untangled from the complete connectome.

In simple terms, the retina is a thin, delicate layer of tissue lining the back of the eye that captures light like film or digital sensors in a camera. But the retina is actually an incredibly complex network of hundreds of millions cells that process light, converting it into electronic signals, which are sent to the brain and used to create the images we see. And, understanding the pathways of this gargantuan network — and how they are rewired with aging and disease — is helpful in trying to save and restore vision.

“If you are going to fix cells in the retina, you have to know how they communicate,” said Robert E. Marc, Ph.D., University of Utah, in the opening keynote lecture at the RD2016 meeting in Kyoto, Japan. Held September 19-24, RD2016 is the largest research conference dedicated exclusively to retinal degenerations, and funded in part by the Foundation Fighting Blindness.
Continue Reading…

Nobel-Prize-Winning Stem-Cell Researcher Delivers Keynote at FFB-Funded Conference in Kyoto

Shinya Yamanaka, M.D., Ph.D.It was only 10 years ago that Shinya Yamanaka, M.D., Ph.D., discovered how to convert a person’s skin cells into stem cells by tweaking just four genes. The historical breakthrough landed Dr. Yamanaka the 2012 Nobel Prize in Physiology-Medicine, because it meant that patients could be their own stem-cell donors. Known as induced pluripotent stem cells (iPSC), they are now being used to develop powerful therapies and drug-screening tools including those for the retina.

To the delight of nearly 300 retinal researchers from around the world attending the FFB-funded RD2016 meeting, September 19-24 in Kyoto, Japan, Dr. Yamanka discussed his early clinical trial for iPSC-derived retinal pigment epithelial (RPE) cells for a 78-year-old woman with advanced wet age-related macular degeneration (AMD). The study met its main goal – safety – and he and his collaborator, Masayo Takahashi, M.D., Ph.D., are planning to treat additional patients in the near future.

Continue Reading…

Embrace Your Exceptions: A Mantra for Understanding Retinal-Disease Inheritance

Stephen Daiger, Ph.D. and colleague Lori Sullivan, Ph.D.Inherited retinal diseases are difficult to understand merely because they’re so rare and diverse. More than 250 genes, when mutated, can cause them, yet collectively, they affect only 200,000 people in the United States.

Their widely varying impact on vision adds to the challenge. For example, the youngest sibling in a family may be nearly blind from retinitis pigmentosa (RP), while his or her older brother or sister with the same RP gene mutation can have near normal vision.

But as FFB-funded retinal geneticist Stephen Daiger, Ph.D., discussed at the RD2016 meeting in Kyoto, Japan, the complex and elusive nature of these conditions can also extend to the way they are passed down in families, making diagnosis and prognosis quite challenging. Dr. Daiger was one of nearly 300 retinal researchers who gathered September 19-24, 2016, for the world’s largest conference focused exclusively on retinal degenerative diseases. The conference was supported in-part by FFB.
Continue Reading…

Researchers Identify Canine Model of LCA (NPHP5) — Pursue Gene Therapy

Photo of William Beltran, Artur Cideciyan, Gustavo Aguirre and Samuel Jacobson. Photo by John Donges/Penn Vet

William Beltran, Artur Cideciyan, Gustavo Aguirre and Samuel Jacobson. Photo by John Donges/Penn Vet

When scientists embark on developing a treatment for an inherited retinal disease, one of their first tasks is to identify or create a model of the condition. Disease models can be cells in a Petri dish, a genetically engineered mouse or rat, or larger animal such as a pig. Each type of model has its pros and cons, including cost and similarity of disease characteristics to those in humans.

The investigators then use the model to study how vision is lost — that is, they figure out which types of retinal cells degenerate, what is causing the degeneration, and how quickly the cells stop working. After they gain an understanding of the disease, researchers evaluate potential therapeutic approaches using the model as a testing platform.

The goal: Move a therapy into a human study.
Continue Reading…

Optogenetic Therapy Takes First Step Forward in Clinical Trial

Retrosense logoRetroSense Therapeutics has reported that three participants have received injections of its potential optogenetic therapy, known as RST-01, in a Phase I/II clinical trial. The patients were given the lowest dose of RST-01, and no adverse ocular events were observed. Furthermore, the treatment showed some biological activity, though RetroSense did not provide details about what that activity was or what it meant.

More information on safety and efficacy will likely be reported about the RetroSense trial after more trial participants have been observed over a longer period of time, and after discussions with the U.S. Food and Drug Administration. Continue Reading…

Pixium Vision Reports Progress in Development of Two Advanced Bionic Retina Systems

Man wearing Pixium Bionic Retina GlassesWhile several companies and laboratories around the world are at various stages of bionic-retina development, Pixium Vision  located in France, is progressing impressively down two paths for these high-tech, vision-restoring systems. Both approaches show strong, near-term potential for providing meaningful vision to people who are otherwise blind from retinal diseases such as retinitis pigmentosa and age-related macular degeneration (AMD).

Pixium recently announced that its IRIS®II bionic vision system received a CE Mark, the regulatory approval necessary for marketing medical devices and other products in Europe. The IRIS II is further down the company’s clinical development pipeline than its more technologically advanced PRIMA system, which was originally conceptualized by researchers at Stanford University, and is expected to enter a clinical trial later this year for AMD.

Continue Reading…

Artist with Usher Syndrome Excited to Register on My Retina Tracker to Drive Retinal Research

Artis Dana Simon at work.In a post at, artist Dana Simon describes her experience with My Retina Tracker, a free and secure online registry for people with inherited retinal diseases. My Retina Tracker provides researchers with invaluable information that helps them study retinal diseases, and informs patients when their profile matches clinical-trial criteria. Examples of Dana’s artwork can be found on her website.

Stem-Cell Therapy for Retinitis Pigmentosa Safe Thus Far in Early Human Study

Dr. Klassen in his labAn emerging stem-cell-derived treatment designed to preserve and potentially restore vision in people with retinitis pigmentosa (RP) has demonstrated a favorable safety profile in an ongoing Phase I/II clinical trial at the University of California, Irvine. The therapy is being developed by the regenerative medicine company jCyte with trial funding from the California Institute for Regenerative Medicine. Earlier research funded by the Foundation Fighting Blindness helped advance this therapeutic approach toward a human study.

Given this trial is one of the first-ever for a stem-cell-derived therapy for RP, this safety report is good news and an important step in the right direction. We at the Foundation look forward to additional reports from this study in the coming years as the trial advances.

Continue Reading…

VISIONS 2016 – Keynote Speaker Dartanyon Crockett on Fear and Courage

Dartanyon CrockettAlmost from the start, the cards were stacked against Dartanyon Crockett. He was diagnosed, at an early age, with Leber’s disease, which caused him to be legally blind. At the age of 8, he lost his mother. And by middle school, he was relentlessly teased for being visually impaired.
Continue Reading…

VISIONS 2016 – Dr. Richard Weleber Receives FFB’s Highest Research Honor, Recognized in Touching Video

Dr. Richard WeleberConsidering all that Richard Weleber, M.D., has accomplished over four decades —
including leadership and oversight of clinical trials for emerging retinal-disease therapies and innovations in retina imaging and functional evaluation at the world-renowned Casey Eye Institute, Oregon Health & Science University — it comes as no surprise that he’s been given FFB’s Llura Liggett Gund Award for career achievement. Dr. Weleber became the 10th recipient of the Foundation’s highest honor, named after FFB co-founder Lulie Gund, during the opening lunch of the VISIONS 2016 conference.
Continue Reading…