USHER 1b Works in progress and knowledge gaps

José-Alain Sahel Paris, Pittsburgh

What we (don't) know

- The pathobiology of the disease :
- o gene discovery
- Animal models
- Protein function
- Stages of the disease
- The implications of multisensory impairment
- Communication issues
- Impact of visual loss on balance
- Holistic care

- The development of efficient gene therapies
- What vectors (size, tissue diffusion)
- What promoters
- O When is it too late ?
- The development of gene independent approaches
- Neuroprotection
- Optogenetics
- Prosthetics
- Cell replacement
- The demonstration of a therapeutic benefit
- o natural history data
- Outcome measures
- o PROs, PBTs

First identification of an USH gene

1995: The Usher Syndrome type IB gene, USH1B/MYO7A, encoding for myosin VIIa

LETTERS TO NATURE

NATURE · VOL 374 · 2 MARCH 1995

Defective myosin VIIA gene responsible for Usher syndrome type 1B

Dominique Weil, Stéphane Blanchard,
Josseline Kaplan*, Parry Guilford,
Fernando Gibson†, James Walsh†,
Philomena Mburu†, Anabel Varela†,
Jacqueline Levilliers, Michael D. Weston‡,
Phillip M. Kelley‡, William J. Kimberling‡,
Mariette Wagenaar§, Fabienne Levi-Acobas,
Dominique Larget-Piet*, Arnold Munnich*,
Karen P. Steel||, Steve D. M. Brown†
& Christine Petit¶

Motor domain MyTH4 (1) FERM (1) SH3 MyTH4 (2) FERM (2)

Cellular and subcellular targets of USH1B protein?

Inner ear: the sensory hair cells & the mechano-sensitive hair bundles

Auditory sensory organ: organ of Corti

Sound receptive-hair bundle

El-Amraoui A, et al. -> Petit C, HMG 1996

* Retina: Photoreceptors (PhR) & retinal pigment epithelial cells (RPE)

Source: U. Wolfrum 2000

Phenotype discrepancy between USH1 patients and related mouse models ?

❖ Whilst USH1 mutant mice do reproduce the inner ear-related symptoms, differences exist as to expressivity of retinal dysfunction?

USH1 mouse models display no visual defects

Molecular and structural differences between mouse and primate photoreceptors

No ring of calyceal processes (CPs) in mouse photoreceptor cells

Sahly et al. J. Cell Biol. (2012)

❖ Loss of USH1 function leads to defective calyceal processes & impaired outer segment disks morphogenesis

Morpholino-Based approach in Xenopus to study USH1 role in the retina

rod photoreceptor

X. tropicalis pcdh15 morphant

Katheb et al, RETINA, 2020

Therapies in development

- The development of efficient gene therapies
- What vectors (size, tissue diffusion)
- What promoters
- OWhen is it too late?
- The development of gene independent approaches
- Neuroprotection
- Optogenetics
- Prosthetics
- Cell replacement

GENE THERAPY FOR VISION RESTORATION IN ROD-CONE DYSTROPHIES

CORPORATE PRESENTATION | SPARING VISION

The Usher syndrome (USH) genes & AAV-mediated therapy

USH1

USH1B (MYO7A, 11q13.5 - OMIM 276903): myosin VIIa

USH1C (USH1C, 11p15.1 - OMIM 605242): harmonin

USH1D (CDH23, 10q22.1 - OMIM 605516): cadherin-23

USH1F (PCDH15,10g21.1 - OMIM 605514): protocadherin-15

USH1G (USH1G, 17q25.1 - OMIM 607696): Sans

Atypical form

DFNB48/USH1J (*CIB2*, 15q25.1 - OMIM 605564) : calcium integrin binding protein 2

ORF = 6645 bp 2215 aa, 254 kDa

ORF = 2697 bp 899 aa, 98 kDa

ORF = 10 062 bp 3354 aa, 369 kDa

ORF = 5865 bp 1955 aa, 216 kDa

ORF = 1383 bp 461 aa, 51 kDa

ORF = 561 bp 187 aa, 21 kDa **ORF** = 696 bp 232 aa, 25 kDa

ORF = 2721 bp

907 aa, 96 kDa

ORF = 15 606 bp 5202 aa, 575 kDa

ORF = 18 918 bp

6306 aa, 693 kDa

Only 5 USH genes fit into a single AAV

USH₂

USH2A (USH2A, 1q41 - OMIM 608400) : usherin

«transmembrane form»

USH2C (GPR98, 5q14.3 - OMIM 602851) : ADGVR1 (adhesion G-protein coupled receptor V1)

USH2D (WHRN, 9q32 - OMIM 607928) : whirlin

Long isoform (L)

USH3

USH3A (*CLRN1*, 3q25.1 - OMIM 606397) :

clarin-1

- The implications of multisensory impairment
- Communication issues
- Impact of visual loss on balance
- Holistic care

Major gaps

- Relevant large animal models
- Large capacity vectors
- Better understanding of natural history and outcome measures
- Integrating the multisensory dimension
- Integrating patient perspectives at all stages